Benchmarking Nitrous Oxide Adsorption and Activation in Metal-Organic Frameworks Bearing Coordinatively Unsaturated Metal Centers

12 December 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Anthropogenic emissions of N2O, the third most abundant greenhouse gas after CO2 and CH4, are contributing to global climate change. Although metal-organic frameworks (MOFs) have been widely studied as adsorbents for CO2¬ and CH4, less effort has focused on the use of MOFs to remove N2O from emission streams or from air. Further, N2O activation would enable its use as an inexpensive oxidant for fine chemical synthesis. Herein, we identify features that contribute to strong binding and high uptake of N2O at coorinatively unsaturated metal sites in the M2Cl2(btdd) (M= Mn, Co, Ni, Cu; btdd2– = bis(1,2,3-triazolo[4,5-b],[4′,5′-i])dibenzo[1,4]dioxin) and M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn; dobdc4− = 2,5-dioxido-1,4-benzenedicarboxylate) series of MOFs. Combined experimental and computational studies suggest that N2O adsorption at open-metal-sites is primarily based on electrostatic interactions, rather than π-backbonding, causing MOFs with more Lewis acidic metal centers to be superior N2O adsorbents. As a result, Mg2(dobdc) demonstrates strong binding and record-setting N2O uptake (8.75 mmol/g at 1 bar and 298 K). Using density functional theory (DFT) to characterize reactive intermediates and transition states, we demonstrate that N2O activation to form a M(IV)-oxo species and N2 is thermodynamically favorable in Mn2(dobdc) and Fe2(dobdc) but appears to be kinetically limited in Mn2(dobdc). Our work lays a foundation for understanding N2O adsorption and activation in MOFs, paving the way for the design of promising next-generation materials for N2O capture and utilization.

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Experimental procedures and computational studies
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.