Abstract
Layered nickel-rich lithium transition metal oxides (LiNixMnyCo1−x−yO2; where x ≥ 0.8), with single-crystalline morphology, are promising future high-energy-density Li-ion battery cathodes due to their ability to mitigate particle-cracking-induced degradation. This is due to the absence of grain boundaries in these materials, which prevents the build-up of bulk crystallographic strain during electrochemical cycling. Compared to their polycrystalline counterparts, there is a need to study single-crystalline Ni-rich cathodes using operando X-ray methods in uncompromised machine-manufactured industry-like full cells to understand their bulk degradation mechanisms as a function of different electrochemical cycling protocols. This can help us identify factors to improve their long-term performance. Here, through in-house operando X-ray studies of pilot-line-built LiNi0.8Mn0.1Co0.1O2–Graphite A7 pouch cells, it is shown that their electrochemical capacity fade under harsh conditions (2.5–4.4 V and 40 °C for 100 cycles at C/3 rate) primarily stems from the high-voltage reconstruction of the cathode surface from a layered to a cubic (rock salt) phase that impedes Li+ kinetics and increases cell impedance. Post-mortem electron and X-ray microscopy show that these cathodes can withstand severe anisotropic structural changes and show no cracking when cycled under such conditions. Comparing these results to those from commercial Li-ion cells with surface-modified single-crystalline Ni-rich cathodes, it is identified that cathode surface passivation can mitigate this type of degradation and prolong cycle life. In addition to furthering our understanding of degradation in single-crystalline Ni-rich cathodes, this work also accentuates the need for practically relevant and reproducible fundamental investigations of Li-ion cells and presents a methodology for achieving this.
Supplementary materials
Title
Electronic supplementary materials
Description
Supplementary plots and data
Actions