Machine learning force field ranking of candidate solid electrolyte interphase structures in Li-ion batteries

07 December 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The Solid-Electrolyte Interphase (SEI) formed in lithium-ion batteries is a vital but poorly-understood class of materials, combining organic and inorganic components. An SEI allows a battery to function by protecting electrode materials from unwanted side reactions. We use a combination of classical sampling and a novel machine learning model to produce the first set of SEI candidate structures ranked by predicted energy, to be used in future machine learning applications and compared to experimental results. We hope that this work will be the start of a more quantitative understanding of lithium-ion battery interphases and an impetus to development of machine learning models for battery materials.

Keywords

Machine Learning Force Fields
Batteries
Electrolytes
Solid Electrolyte Interphase

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.