Molybdenum(0) tricarbonyl complex supported by an azacalixpyridine ligand: Synthesis, characterization, surface deposition and conversion to a molybdenum(VI) trioxo complex with O2

23 November 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Adsorption of metal-organic complexes on metallic surfaces to produce well-defined single site catalysts is a novel approach combining the advantages of homogeneous and heterogeneous catalysis. To avoid the “surface trans-effect” a dome-shaped molybdenum(0) tricarbonyl complex supported by an tolylazacalix[3](2,6)pyridine ligand is synthesized. This vacuum-evaporable complex both activates CO and reacts with molecular oxygen (O2) to form a Mo(VI) trioxo complex which in turn is capable of catalytically mediating oxygen transfer. The molybdenum tricarbonyl- and trioxo complexes are investigated in the solid state, in homogeneous solution and on noble metal surfaces (Cu, Au) employing a range of spectroscopic and analytical methods.

Keywords

catalysis
surface chemistry
O-O activation

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supplementary data and figures for the main paper
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.