ROBERT: Bridging the Gap between Machine Learning and Chemistry

07 November 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Beyond addressing technological demands, the integration of machine learning (ML) into human societies has also promoted sustainability through the adoption of digitalized protocols. Despite these advantages and the abundance of available toolkits, a substantial implementation gap is preventing the widespread incorporation of ML protocols into the computational and experimental chemistry communities. In this work, we introduce ROBERT, a software carefully crafted to make ML more accessible to chemists of all programming skill levels, while achieving results comparable to those of field experts. We conducted benchmarking using six recent ML studies in chemistry containing 18–4,149 entries. Furthermore, we demonstrated the program’s ability to initiate workflows directly from SMILES strings, which simplifies the generation of ML predictors for common chemistry problems. To assess ROBERT’s practicality in real-life scenarios, we employed it to discover new luminescent Pd complexes with a modest dataset of 23 points, a frequently encountered scenario in experimental studies.

Keywords

ROBERT
automated workflows
automation
machine learning
cheminformatics

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.