Abstract
Red fluorescent protein (RFP) variants are highly sought after for in-vivo imaging since longer wavelengths improve depth and contrast in fluorescence imaging. However, the lower energy emission wavelength usually correlates with a lower fluorescent quantum yield than their green emitting counterparts. To guide the rational design of bright variants, we have theoretically assessed two variants (mScarlet and mRouge) which are reported to have very different brightness. Using an α-CASSCF QM/MM framework (chromophore and all protein residues within 6 Å of it in the QM region, for a total of more than 450 QM atoms), we identify key points on the ground and first excited state potential energy surfaces. The brighter variant mScarlet has a rigid scaffold, and the chromophore stays largely planar on the ground state. The dimmer variant mRouge shows more flexibility and can accommodate a pre-twisted chromophore conformation which provides easier access to conical intersections. The main difference between the variants lies in the intersection seam regions, which appear largely inaccessible in mScarlet but partially accessible in mRouge. This observation is mainly related with changes in the cavity charge distribution, the hydrogen-bonding network involving the chromophore and a key ARG/THR mutation (which changes both charge and steric hindrance).
Supplementary materials
Title
Supporting Information
Description
Supplementary Information for Conical Intersection Accessibility Dictates Brightness in Red Fluorescent Proteins
Actions