Elucidating the effects of temperature on nonaqueous redox flow cell cycling performance

03 November 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The impact of cell temperature is a relatively underexplored area within the burgeoning field of nonaqueous redox flow batteries (NAqRFBs). Here, we investigate the effect of elevated temperature on the performance of nonaqueous redox electrolytes and associated flow cells. Using a model compound, N-(2-(2-methoxyethoxy)-ethyl)phenothiazine (MEEPT), in a propylene-carbonate-based electrolyte, we experimentally measure the temperature dependence of relevant physicochemical properties (i.e., electrolyte conductivity, viscosity, diffusivity) and electrochemical characteristics (i.e., chemical and electrochemical reversibility) across a temperature range of 30 to 70 °C. We then perform flow cell studies, finding that while ohmic and mass transport resistances decrease significantly with increases in temperature for the MEEPT/MEEPT+● redox couple, accessible electrolyte capacity gradually reduces at temperatures >50 °C. Ex-situ, post-test characterization using microelectrode voltammetry suggests that this capacity fade is due to instability of the MEEPT radical cation. Finally, using MEEPT as a posolyte and a model viologen negolyte (bis(2-(2-methoxyethoxy)ethyl)viologen), we assemble a full cell and perform polarization analysis, observing a 2× increase in the peak power density when the operating temperature is increased from 30 to 70 °C. Broadly, this work highlights opportunities for systematic engineering of nonaqueous electrolytes and flow cells for higher power operation at elevated temperatures.

Keywords

Nonaqueous redox flow battery
elevated temperature
decay
symmetric cell cycling
impedance
viscosity
conductivity

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Summarizes the flow cell design and assembly. Provides a bill of materials for flow cell parts. Provides additional figures, details, and analysis, all referenced in the main text.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.