Exploring Alternate Methods to High-Level Vibrational Correction Calculations of NMR Spin-Spin Coupling Constants

02 November 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Traditional nuclear magnetic resonance (NMR) calculations typically treat systems with a Born-Op penheimer-derived electronic wavefunction that is solved for a fixed nuclear geometry. One can numerically account for this neglected nuclear motion by averaging over property values for all nuclear geometries with a vibrational wavefunction and adding this expectation value as a correction to an equilibrium property value. Presented are benchmark coupled-cluster singles and doubles (CCSD) vibrational corrections to spin-spin coupling constants (SSCCs) computed at the level of vibrational second-order perturbation theory (VPT2) using the vibrational averaging driver of the CFOUR program. As CCSD calculations of vibrational corrections are very costly, cheaper electronic structure methods are explored via a newly developed Python vibrational averaging program within the Dalton Project. Namely, the second-order polarisation propagator approximation (SOPPA) and density functional theory (DFT) with the B3LYP and PBE0 exchange-correlation functionals are compared to the benchmark CCSD//CCSD(T) and experimental values. CCSD//CCSD(T) corrections are also combined with literature CC3 equilibrium values to form the highest-order vibrationally corrected values available i.e. CC3//CCSD(T) + CCSD//CCSD(T). CCSD//CCSD(T) statistics showed favourable statistics in comparison to experimental values, albeit at an unfavourably high computational cost. A cheaper CCSD//CCSD(T) + B3LYP method showed quite similar mean absolute deviation (MAD) values as CCSD//CCSD(T), concluding that CCSD//CCSD(T) + B3LYP is optimal in terms of cost and accuracy. With reference to experimental values, a vibrational correction was not worth the cost for all other methods tested. Finally, deviation statistics showed that CC3//CCSD(T) + CCSD//CCSD(T) vibrational corrected equilibrium values deteriorated in comparison to CCSD//CCSD(T) attributed to the use of a smaller basis and/or lack of solvation effects for the CC3 equilibrium calculations.

Keywords

NMR Spin-spin coupling constants
Vibrational averaging
CCSD
SOPPA
SOPPA(CCSD)
DFT

Supplementary materials

Title
Description
Actions
Title
SUPPORTING INFORMATION: Exploring Alternate Methods to High-Level Vibrational Correction Calculations of NMR Spin-Spin Coupling Constants
Description
Tables with the calculated spin-spin coupling constants at the equilibrium geometry and their zero-point vibrational corrections for all studied molecules and methods
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.