Harvesting Water from Air with High-Capacity, Stable Furan-Based Metal–Organic Frameworks

31 October 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We synthesized two isoreticular furan-based metal–organic frameworks (MOFs), MOF-LA2-1(furan) and MOF-LA2-2(furan) with rod-like secondary building units (SBUs) featuring 1D channels, as sorbents for atmospheric water harvesting (LA = long arm). These aluminum-based MOFs demonstrated a combination of high water uptake and stability, exhibiting working capacities of 0.41 and 0.48 g of water per g of MOF (under isobaric conditions of 1.70 kPa), respectively. Remarkably, both MOFs showed negligible loss in water uptake after 165 adsorption-desorption cycles. These working capacities rival those of MOF-LA2-1(pyrazole), which has a working capacity of 0.55 g of water per g of MOF. The current MOFs stand out for their high water stability as evidenced by 165 cycles of water uptake and release. MOF-LA2-2(furan) is the first aluminum MOF to employ a double 'long arm' extension strategy, confirmed through single-crystal X-ray diffraction (SCXRD). The MOFs were synthesized using a straightforward synthesis route. This study offers valuable insights into designing durable, water-stable MOFs and underscores their potential for efficient water harvesting.

Keywords

Metal–Organic Frameworks
MOFs
Water Harvesting
Aluminum
Long Arm
High Capacity
Stable
Single Crystal
Durable
Robust
DFT

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Synthesis and full characterization of MOFs including NMR spectroscopy, EA, computational studies, SCXRD data, PXRD data, nitrogen sorption data, water sorption data, SEM and EDS images.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.