Infrared Free Induction Decay (IR-FID) of Non-Interfacial Origin Observed in the Interfacial Sum-Frequency Generation Vibrational Spectroscopy (SFG-VS)

27 October 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report the observation of infrared free induction decay (IR-FID) signal of the anti-symmetric modes around ~ 2350 cm-1 of the gaseous CO2 molecules in the air in the sum-frequency generation vibrational spectroscopy (SFG-VS) measurement from the gold surface. These signals appeared with time-dependent interference pattern in the 15-73 ps range and beyond after the time-zero of the SFG-VS process. The interference pattern was found to reflect the rotational coherence of the gaseous CO2 molecules. Similar IR-FID and rotational coherence was also observed for the symmetric and asymmetric stretching modes of gaseous H2O molecules in air. The gold surface in this case serves as the up-conversion agent with the visible pulse as the time-gate for the ultrafast IR-FID emissions. We tested this hypothesis by replacing the gold surface with a β-BBO (beta-barium borate, β-BaB2O4) and found a five orders of magnitude increase of the signal in the reflecting geometry. The up-conversion of the IR-FID radiation of non-interfacial origin into the SFG-VS signal also provides the mechanistic understanding of the ‘abnormal spectral bands’ in broadband SFG-VS induced by bulk absorption and refraction reported in the literature.

Keywords

Infrared Free Induction Decay
Sum-Frequency Generation
Time-Resolved
Carbon Dioxide
Rotational Coherence
Up-Conversion

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.