Abstract
Biocatalytic oxidations have the potential to address many synthetic chemistry challenges, enabling the selective synthesis of chiral intermediates such as carbonyl compounds, alcohols, or amines. The use of oxygen-dependent enzymes can dramatically reduce the environmental footprint of redox transformations at manufacturing scale. Here, as part of the biocatalytic cascade to an anti-HIV investigational drug islatravir 1, we describe the development of an aerobic oxidation process delivering (R)-ethynylglyceraldehyde 3-phosphate 3 using an evolved galactose oxidase enzyme. Integrated enzyme and reaction engineering were critical for achieving a robust, high-yielding oxidation performed at pilot plant scale (>20 kg, 90% yield).