Abstract
Artificial metalloenzymes (ArMs) have emerged as a promising avenue in the field of biocatalysis, offering new reactivity. However, their design remains challenging due to the limited understanding of their protein dynamics and how the introduced cofactors alter the protein scaffold structure. Here we present the structures and catalytic activity of novel copper ArMs capable of (R)- or (S)-stereoselective control, utilizing a steroid carrier protein (SCP) scaffold. To incorporate 2,2’-Bipyridine (Bpy) into SCP, two distinct strategies were employed: either Bpy was introduced as an unnatural amino acid (2,2’-bipyridin-5-yl)alanine (BpyAla) using amber stop codon expression or via bioconjugation of bromomethyl-Bpy to cysteine residues. The resulting ArMs proved to be effective at catalysing an enantioselective Friedel-Crafts reaction with SCP_Q111BpyAla achieving the best selectivity with an enantioselectivity of 72% ee (S). Interestingly, despite using the same protein scaffold, different attachment strategies for Bpy at the same residue (Q111) led to a switch in the enantiopreference of the ArM.
Supplementary materials
Title
Supporting Information A
Description
Additional experimental details, materials, methods and data.
Actions
Title
Supporting Information B
Description
Additional information on the computational studies.
Actions