Knot data analysis using multiscale Gauss link integral

16 October 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In the past decade, topological data analysis (TDA) has emerged as a powerful approach in data science. The main technique in TDA is persistent homology, which tracks topological invariants over the filtration of point cloud data using algebraic topology. Although knot theory and related subjects are a focus of study in mathematics, their success in practical applications is quite limited due to the lack of localization and quantization. We address these challenges by introducing knot data analysis (KDA), a new paradigm that incorporating curve segmentation and multiscale analysis into the Gauss link integral. The resulting multiscale Gauss link integral (mGLI) recovers the global topological properties of knots and links at an appropriate scale but offers multiscale feature vectors to capture the local structures and connectivities of each curve segment at various scales. The proposed mGLI significantly outperforms other state-of-the-art methods in benchmark protein flexibility analysis, including earlier persistent homology-based methods. Our approach enables the integration of artificial intelligence (AI) and KDA for general curve-like objects and data.

Keywords

Knot data analysis
Gauss link integral
multiscale analysis
protein flexibility

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.