The decisive role of CuI-framework O binding in oxidation half cycle of selective catalytic reduction

13 October 2023, Version 1

Abstract

Cu-exchanged zeolite is an efficient catalyst to remove harmful nitrogen oxides from diesel exhaust gas through the selective catalytic reduction (SCR) reaction. The SCR performance is structure dependent, in which a Cu with one adjacent framework Al (1AlCu) has lower activation energy in oxidative half-cycle than Cu with two adjacent framework Al (2AlCu). Using a combination of operando X-ray absorption spectroscopy, valence to core - X-ray emission spectroscopy and density functional theory calculations, here we showed that 1AlCu proceeds with nitrate mechanism, in which side-on coordination of O2 at a CuI(NH3)xOfw (fw = framework) is the rate-limiting step in the oxidation half-cycle. As a result, the CuI(NH3)xOfw at 1AlCu can easily yield a transient CuIINOx intermediate upon breaking of Cu-Ofw after interaction with NO. In the meantime, 2AlCu has high barriers for Cu-Ofw bond breaking and proceeds with dimer mechanism. Our results show the coexisting of both dimer and nitrate mechanism, in particular at high Cu loadings, in which controlling the strength of the Cu-Ofw coordination is key for the O-O split in the nitrate pathway.

Keywords

SCR mechanism
HERFD-XANES
VtC-XES
Side on oxygen
CuI(NH3)xOfw

Supplementary materials

Title
Description
Actions
Title
Supporting information for the main text
Description
The supporting information includes the catalytic performance, EPR spectra, XANES for the reference sample, the detailed MS data for the time-resolved experiment, EXAFS fitting result, spectra of HERFD-XANES, discussion of the VtC-XES, summary of Cu speciation and details of the DFT calculation
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.