Tunable magnetic order in Fe-Mg co-doped montmoril- lonite nano-clay interfaced with amino acids.

22 September 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The present study investigates the tunable magnetic order as well as the electrostatic and magnetic interactions due to the adsorption of the amino acids (AA) on the insulating montmorillonite (MMT) nano-clay in vacuum and in aqueous medium using the first principle density functional theory (DFT). A single layer MMT clay of thickness 0.68 nm has been co- doped with impurity atoms, Fe(II) and Mg(II), each of concentration 12.5 %. Our calculated values of interaction energies suggest that the water molecules enhances the binding affinity of AA molecules due to the formation of a strong hydrogen bonding with substantial charge transfer between AA molecules (charge donor) and nano-clay (charge acceptor). We also predicted the possible transition in magnetic orders (ferromagnetism, antiferromagnetism, and ferrimagnetism) due to adsorption of AA molecules while going from vacuum to aqueous medium which has not been reported yet. Such kind of study possess potential applications in tissue engineering, pharmacology, magnetic resonance imaging, and chemical engineering.

Keywords

amino acids
montmorillonite (MMT) nano-clay
density functional theory (DFT)
magnetic order

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.