Abstract
Aromaticity is typically regarded as an in-trinsic property of a molecule. It is often correlated with electron delocalization, stability, and other properties. Small variations in the molecular geometry usually result in small changes in aromaticity, in line with Hammond’s postu-late: for example, introducing bond-length alternation in benzene and square cyclobutadiene gradually decreases the magnitude of their ring currents, making them less aromatic and less antiaromatic, respectively. A sign change in the ring current, corresponding to a reversal of aromaticity, typically requires a gross perturbation such as electronic excitation, addition or removal of two electrons, or a dramatic change in the molecular geometry. Here, we use multireference calculations to show how small changes in bond-length alternation induce a sudden reversal in the ring current of cyclo[16]carbon, C16. This reversal occurs when the two orthogonal π systems of C16 sustain opposing currents. These results are rationalized by a Hückel model which includes bond-length alternation combined with a minimal model accounting for orbital contributions to the ring current. Finally, we successfully describe the electron-ic structure of C16 with a divide-and-conquer approach suitable for execution on a quantum computer.
Supplementary materials
Title
Supporting Information for Aromaticity Reversal Induced by Vibrations in Cyclo[16]carbon
Description
Supporting Information includes molecular geometries, DFT results for the S0, T1, and Q1 states, and MATLAB code used for the HHM.
Actions