Abstract
We have built a proton exchange membrane hydrogen fuel cell optimized for angle-resolved X-ray absorption spectroscopy. This cell allows in-situ fluorescence measurements during electrochemical operation with minimal trade-offs in cell performance while reaching automotive current densities. The fluorescence signal can be collected from wide angles to extract depth information from the probed atomic species such as Pt, Co, and Ni, crucial to highly efficient FC. This cell is designed to assess the connection between the ionic drag/diffusion and the performance loss by following the real-time movement of the species through the membrane electrode assembly.
Supplementary materials
Title
Supporting information
Description
Experimental: ID26 setup, materials, controllers, electrochemical characterization, experimental protocol)
Actions