Engineering Pt-Pt coordination environment to enhance the four-electron oxygen reduction reaction

11 September 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The oxygen reduction reaction (ORR) in proton exchange membrane fuel cells plays an important role in the H2 economy. Pt-based alloy catalysts with tuned d-band centres are widely regarded as the most efficient catalysts. Here we report that the average size of Pt domains in a Pt-Pd alloy, described as the Pt-Pt coordination number (C.N.), may measure the coordination environment of Pt and its effect on the d-states, to serve as a key geometric descriptor for the ORR activity. The decrease of Pt-Pt C.N. from 10.8 in commercial Pt nanoparticles to 1.33 in Pt1Pd493 alloy leads to an exponential increase in the Pt mass activity from 0.18 to 4.86 A/mgPt. Density functional theory calculations show that low C.N. sites of Pt within the Pd host have low O-O dissociation barriers, favouring the four-electron dissociative pathway. The precise engineering of Pt-Pt C.N. in an alloy is critical for optimising metal use in the activation of chemically stable compounds, particularly in the context of catalysis for renewable energy.

Keywords

Dimer Alloy
PtPd Catalyst
Oxygen Reduction Reaction
Nanoparticle
In situ XAFS

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Experimental Methods and Supplementary Figures, Tables and Notes for Engineering Pt-Pt Coordination Environment To Enhance The Four-Electron Oxygen Reduction Reaction
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.