Abstract
Here, we report synthesis of magnetic nanocomposite with zero-waste approach for organic pollutant removal and oxygen evolution reaction. The nanocomposite was synthesized using agriculture waste soaked with Co2+-Fe3+ metal ions at 900 °C and characterized using FESEM, HRTEM, PXRD, Zeta-potential, and VSM techniques. The nanocomposite shows an impressive adsorbent property for organic dyes (90-96 % removal), and pharmaceutical drug (paracetamol, 84% removal), along with individually used ‘hair dye’ (95% removal) in 5 min only. The recyclability of the nanocomposite demonstrates the practical benefits of the material for waste water remediation. Interestingly, after the adsorption, the generated secondary waste (exhausted dye adsorbed nanocomposite) is used as oxygen evolution reaction (OER) electrocatalyst. The dye-adsorbed nanocomposite shows good OER activity with an overpotential of 264 mV at 10 mA/cm2 with good stability upto 10 h. This study sheds light on the reuse and recycling of the secondary waste of the adsorption process to develop efficient OER electrocatalysts and shows a zero-waste approach towards the environment.