Abstract
Macrocyclic host molecules bound to electrode sur-faces enable the complexation of catalytically active guests for mo-lecular heterogeneous catalysis. We present a surface-anchored host-guest complex with the ability to electrochemically oxidize ammonia in both organic and aqueous solutions. With an adamantyl motif as the binding group on the backbone of the molecular catalyst [Ru(bpy-NMe2)(tpada)(Cl)](PF6) (1) (where bpy-NMe2 is 4,4’-bis(dimethylamino)-2,2’-bipyridyl, tpada is 4'-(adamantan-1-yl)-2,2':6',2''-terpyridine), high binding constants with β-cyclodextrin were observed in solution (in dmso-d6: D2O (7:3), K11 = 1581 ± 95 M-1). The strong binding affinities also transferred to a mesoporous ITO (mITO) surface functionalized with a phosphonated derivative of β-cyclodextrin. The newly designed catalyst (1) was compared to the previously reported naphthyl-substituted catalyst [Ru(bpy-NMe2)(tpnp)(Cl)](PF6) (2) (where tpnp is 4'-(naph-thalene-2-yl)-2,2':6',2''-terpyridine) for its stability during catalysis. Despite the insulating nature of the adamantyl substituent serving as the binding group, the stronger binding of this unit to the host functionalized electrode and the resulting shorter distance between the catalytic active center and the surface led to better performance and higher stability. Both guests are able to oxidize ammonia in both organic and aqueous solutions and the host-an-chored electrode can be refunctionalized multiple times (>3) following loss of the catalytic activity, without a re-duction in performance. Guest 1 exhibits significantly higher stability in comparison to guest 2 towards basic con-ditions, which often constitutes a challenge for anchored molecular systems. Ammonia oxidation in water led to the selective formation of NO3- with faradaic efficiencies of up to 98%.