Abstract
Supercapacitors offer superior energy storage capabilities than traditional capacitors, making them useful for applications such as electric vehicles and rapid large-scale energy storage. The energy storage performance of these devices relies on electrical double-layer capacitance and/or pseudo-capacitance from rapid reversible redox reactions. Metal-organic frameworks (MOFs) have recently emerged as a new class of electrode materials with promising supercapacitor performances and capacitances that exceed those of traditional materials. However, our comparison of the supercapacitor performance of a porous carbon and a state-of-the-art MOF highlights a number of challenges for MOF supercapacitors, including low potential windows, limited cycle lifetimes, and poor rate performances. We propose that the well-defined and tuneable chemical structures of MOFs present a number of avenues for improving supercapacitor performance. We also discuss recent experimental and theoretical work on charging mechanisms in MOF-based supercapacitors, and find a need for more studies that elucidate the charge storage and
degradation mechanisms. Ultimately, a deeper understanding will lead to design principles for realising improved supercapacitor energy storage devices.