Machine learning-guided high throughput nanoparticle design

29 August 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Designing nanoparticles with desired properties is a challenging endeavor, due to the large combinatorial space and complex structure-function relationships. High throughput methodologies and machine learning approaches are attractive and emergent strategies to accelerate nanoparticle composition design. To date, how to combine nanoparticle formulation, screening, and computational decision-making into a single effective workflow is underexplored. In this study, we showcase the integration of three key technologies, namely microfluidic-based formulation, high content imaging, and active machine learning. As a case study, we apply our approach for designing PLGA-PEG nanoparticles with high uptake in human breast cancer cells. Starting from a small set of nanoparticles for model training, our approach led to an increase in uptake from ~5-fold to ~15-fold in only two machine learning guided iterations, taking one week each. To the best of our knowledge, this is the first time that these three technologies have been successfully integrated to optimize a biological response through nanoparticle composition. Our results underscore the potential of the proposed platform for rapid and unbiased nanoparticle optimization.

Keywords

microfluidics
high content screening
machine learning
active learning
nanomedicine

Supplementary materials

Title
Description
Actions
Title
Supplementary
Description
Supplementary information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.