Abstract
Selenium (Se) is an essential micronutrient that is found naturally in proteins, nucleic acids, and natural products. Unlike selenoproteins and selenonucleic acids, little is known about the structures of the biosynthetic enzymes that incorporate Se into small molecules. Here, we report the X-ray crystal structure of SenB, the first known Se-glycosyltransferase that was recently found to be involved in the biosynthesis of the Se-containing metabolite selenoneine. SenB catalyzes C–Se bond formation using selenophosphate and an activated uridine diphosphate sugar as a Se and glycosyl donor, respectively, making it the first known selenosugar synthase and only one of four bona fide C–Se bond-forming enzymes discovered to date. Our crystal structure, determined to 2.25 Å resolution, reveals that SenB is a type B glycosyltransferase, displaying the prototypical fold with two globular Rossmann-like domains and a catalytic interdomain cleft. By employing complementary structural biology techniques, we find that SenB undergoes both local and global substrate-induced conformational changes, demonstrating a significant increase in α-helicity and a transition to a more compact conformation. Our results provide the first structure of SenB and set the stage for further biochemical characterization in the future.
Supplementary materials
Title
Supplementary Information
Description
Detailed description of materials and methods, crystallographic and refinement statistics, Tables S1-S3, and Figures S1-S4.
Actions