Abstract
Among various types of chromophore-solvent interactions, the entanglement of chromophore and solvent orbitals, when significant, can cause the chromophore frontier orbitals to spread over to nearby solvent molecules, introducing partial charge-transfer character to the lowest excitations of the chromophore and lowering the excitation energies. While highly intuitive, the physical details of such orbital entanglement effects on the excitation energies of chromophore have yet to be fully explored. Here, using two well-known biochromophores (oxyluciferin and p-hydroxybenzyledene imidazolinone) as examples, we show that the chromophore-solvent orbital entanglements can be elucidated using two quantum mechanical embedding schemes: density matrix embedding theory (DMET) and absolutely localized molecular orbitals analysis (ALMO). However, there remains a great challenge to incorporate the orbital entanglement effect in combined quantum mechanical molecular mechanical (QM/MM) calculations, and we hope that our findings will stimulate development of new methods in that direction