POMFinder: Identifying polyoxometalate cluster structures from pair distribution function data using explainable machine learning

24 August 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Characterisation of material structure with Pair Distribution Function (PDF) analysis typically involves refining a structure model against an experimental dataset. However, finding or constructing a suitable atomic model for PDF modelling can be an extremely labour-intensive task, requiring carefully browsing through large numbers of possible models. We present POMFinder, a machine learning (ML) classifier that rapidly screens a database of structures, here polyoxometalate (POM) clusters, to identify candidate structures for PDF data modelling. The approach is demonstrated to identify suitable POMs on experimental data, including in situ data collected with fast acquisition time. This automated approach shows significant potential for identifying suitable structure models for structure refinements to extract quantitative, structural parameters in materials chemistry research. The code is open source and user-friendly, making it accessible to those without prior ML knowledge. We also demonstrate that POMFinder offers a promising modelling framework for combined modelling of multiple scattering techniques compared to conventional refinement methods.

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Additional data, details on PDF modelling, and Machine Learning model.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.