Beyond Conventional DFT: Advanced Quantum Dynamical Methods for Understanding Degradation of Per- and Polyfluoroalkyl Substances (PFAS)

18 August 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Computational chemistry methods, such as density functional theory (DFT), have now become more common in environmental research, particularly for simulating the degradation of per- and polyfluoroalkyl substances (PFAS). However, the vast majority of computational PFAS studies have focused on conventional DFT approaches that only probe static, time-independent properties of PFAS near stationary points on the potential energy surface. To demonstrate the rich mechanistic information that can be obtained from time-dependent quantum dynamics calculations, we highlight recent studies using these advanced techniques for probing PFAS systems. We briefly discuss recent applications ranging from ab initio molecular dynamics to DFT-based metadynamics and real-time time-dependent DFT for probing PFAS degradation in various reactive environments. These quantum dynamical approaches provide critical mechanistic information that cannot be gleaned from conventional DFT calculations. We conclude with a perspective of promising research directions and recommend that these advanced quantum dynamics simulations be more widely used by the environmental research community to directly probe PFAS degradation dynamics and other environmental processes.

Keywords

PFAS
perfluoroalkyl substances
PFAS removal technologies
environmental chemistry
water treatment
defluorination reactions
ab initio molecular dynamics
time-dependent density functional theory
TDDFT
per- and polyfluoroalkyl substances
quantum dynamics
density functional theory

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.