pHbot: Self-Driven Robot for pH Adjustment of Viscous Formulations via Physics-informed-ML

18 August 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

pH adjustment is crucial for many industrial products, yet this step is typically performed by manual trial-and-error. A particularly industrially relevant yet challenging titration is that of adjusting viscous liquid formulations using weak, polyprotic titrants (usually citric acid). Handling of viscous, non-Newtonian formulations, with such polyprotic acids preferred for their chelation and buffering effects make a robotic solution challenging. We present a self-driving pH robot integrated with physics-informed learning; this hybrid physical-ML model enables automated titration with weak-strong acid/base pairs. To deal with the high viscosities of these formulations, we developed specific automated mixing and cleaning protocols. We hit the target pH within two to five iterations over 250 distinct formulations in labscale small-batch (~ 10 mL and 12 samples) titrations. In the interest of scaling up to match industrial processes, we also demonstrate that our hybrid algorithm works at ~25x scale-up. The method is general, and we open-source our algorithm and designs.

Keywords

Titration
Robotics
Machine learning
Hybrid model
Formulations
Scale-up

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Development of Robotic Platform
Actions
Title
Bot Operation Clip
Description
Video of Robot
Actions
Title
pH Bot Assembly Guide
Description
A description of assembly of robot
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.