Defining the molecular architecture, metal dependence, and distribution of metal-dependent class II sulfofructose-1-phosphate aldolases

08 August 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Sulfoquinovose (SQ or 6-deoxy-6-sulfoglucose) is a sulfosugar that is the anionic head group of plant and cyanobacterial sulfolipids: sulfoquinovosyl diacylglycerols. SQ is produced within photosynthetic tissues, forms a major terrestrial reservoir of biosulfur, and is an important species within the biogeochemical sulfur cycle. A major pathway for the breakdown of SQ is the sulfoglycolytic Embden-Meyerhof-Parnas (sulfo-EMP) pathway, which involves cleavage of the 6-carbon chain of the intermediate sulfofructose-1-phosphate (SFP) into dihydroxyacetone and sulfolactaldehyde, catalyzed by class I or II SFP aldolases. While the molecular basis of catalysis is well studied for class I SFP aldolases, comparatively little is known about class II SFP aldolases. Here, we report the molecular architecture and biochemical basis of catalysis of two metal-dependent class II SFP aldolases from Hafnia paralvei and Yersinia aldovae. 3D X-ray structures in complex with the substrate SFP and product DHAP reveal a dimer-of-dimers (tetrameric) assembly, and identify the sulfonate binding pocket that defines the substrate specificity of these enzymes, two metal binding sites, and flexible loops that are implicated in catalysis. Both enzymes were metal dependent and exhibited high KM values for SFP, consistent with their role in a unidirectional nutrient acquisition pathway. Bioinformatic analysis identified a range of sulfo-EMP gene clusters containing class I/II SFP aldolases. The class I and II SFP aldolases occur exclusively within Actinobacteria and Firmicutes phyla, respectively, while both classes of enzyme occur within Proteobacteria. This work emphasizes the importance of SQ as a nutrient for diverse bacterial phyla and the different chemical strategies they use to harvest carbon from this sulfosugar.

Keywords

enzymes
structural biology
sulfur cycle
bioinformatics
enzyme mechanism

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Supplementary Figures, Supplementary Tables, Experimental details
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.