Reactant-Induced Dynamics of Lithium Imide Surfaces during the Ammonia Decomposition Process

02 August 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ammonia decomposition on lithium imide surfaces has been intensively investigated owing to its potential role in a sustainable hydrogen-based economy. Through advanced molecular dynamics simulations of ab initio accuracy, we show that the surface structure of the catalyst changes upon exposure to the reactants, and a new dynamic state is activated. It is this highly fluctuating state that is responsible for catalysis and not a well defined static catalytic center. In this activated environment, a series of reactions that eventually leads to the release of N2 and H2 molecules become possible. Once the flow of reagent is terminated the imide surface returns to its pristine state. We suggest that by properly engineering this dynamic interfacial state one can design improved catalytic systems.

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary Information for publication
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.