Incorporation of Fe3+ into MnO2 birnessite for enhanced energy storage: Impact on the structure and the charge storage mechanisms

31 July 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Birnessite δ-MnO2, with its low cost, high theoretical capacity, and stable cycling performance in aqueous electrolytes, holds promise as an electrode material for high-power and cost-effective electrochemical energy storage devices. To address its poor electronic conductivity, we incorporated environmentally friendly iron into birnessite and conducted a comprehensive study on its influence on crystal structure, electrochemical reaction mechanisms, and energy storage performance. In this study, a series of birnessite samples with varying iron content (δ-Mn1-xFexO2 with 0 ≤ x ≤ 0.20) were synthesized using solid-state reactions, resulting in well-crystallized particles with micrometric platelet morphology. Through X-ray absorption and Mössbauer spectroscopies, we clearly demonstrated that Fe replaces Mn in the metal oxide layer, while X-ray diffraction revealed that iron content significantly affects interlayer site symmetry and the resulting polytype. The sample with the lowest iron content (δ-Mn0.96Fe0.04O2) exhibits a monoclinic birnessite structure with an O-type interlayer site, while increasing iron content leads to hexagonal symmetry with P-type interlayer sites. Electrochemical investigations indicated that these P-type sites facilitate the diffusion of partially hydrated alkaline ions and exhibit superior rate capabilities compared to the O-type phase. Furthermore, operando XAS revealed that Fe is electrochemically inactive and that the charge storage in birnessite-type phases in a 0.5M K2SO4 electrolyte primarily relies on the redox reaction of Mn. Finally, we determined that P-type δ-Mn0.87Fe0.13O2 achieved the best compromise between enhancing electrical conductivity and maintaining a maximum content of electrochemically active Mn cations.

Keywords

Manganese dioxide
Operando XAS
Supercapacitor
Pseudocapacitive Material
Layered oxide

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
DRX patterns, cycling at different current densities, Raman spectroscopy
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.