Abstract
States with core vacancies, which are commonly created by absorption of X-ray photons, can decay by a two-electron process in which one electron fills the core hole and the second one is ejected. These processes accompany many X-ray spectroscopies. Depending on the nature of the initial core-hole state and the decay valence-hole states, these processes are called Auger decay, intermolecular Coulomb decay, or electron-transfer-mediated decay. To connect many-body wavefunctions of the initial and final states with molecular orbital picture of the decay, we introduce a concept of natural Auger orbitals (NAOs). NAOs are obtained by two-step singular value decomposition of the two-body Dyson orbitals, reduced quantities that enter the expression of the decay rate in the Feshbach--Fano treatment. NAOs afford chemical insight and interpretation of the high-level ab intio calculations of Auger decay and related two-electron relaxation processes.
Supplementary materials
Title
Molecular-Orbital Framework of Two-Electron Processes: Application to Auger and Intermolecular Coulomb Decay: Supplemental Information
Description
SI including figures, tables, and relevant geometries used in the work.
Actions