Fjord-Type AIEgens Based on Inherent Through-Space Conjugation

14 July 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Through-space conjugation (TSC) is a noncovalently electronic interaction that is emerging as a potential complement to through-bond conjugation (TBC)-based strategies for constructing luminescent materials. However, the design of efficient luminogens based on TSC is currently challenging due to a lack of established structure-property understanding. This is particularly true in the case of luminogens displaying aggregation-induced emission (AIE) effects. In this work, three terphenyl derivatives were prepared, and their photophysical properties were systemically studied. It was found that relative to the corresponding m- and p-linked analogues, the electronic interaction of TBC is weakened while the strength of TSC is commensurately enhanced in the constitutional isomer containing an o-linked Fjord-type subunit. Within this set of luminogens, the presence of a Fjord-type arrangement promotes a transformation from aggregation-caused quenching (ACQ) to AIE. Further investigations involving congeneric quaterphenyl and pentphenyl isomers support the universality of the Fjord-type unit as a framework for synthesizing AIE-active luminogens (AIEgens) with inherent TSC. This work not only provides a novel set of AIEgens but also establishes the utility of TSC in controlling the photophysical properties of nonconventional and twisted luminogens.

Supplementary materials

Title
Description
Actions
Title
Fjord-Type AIEgens Based on Inherent Through-Space Conjugation
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.