Abstract
Voltammetry is a ubiquitous electroanalytical method that can be used to help probe sustainable electrochemical technologies. When conducted with a microelectrode (radius ca. μm), voltammetry enables special interrogation of electrolyte solutions by minimizing distortions and facilitating near-steady-state measurements. Methodologies aimed to evaluate the behavior of redox-active species often leverage well-established, physically-grounded expressions that can be extended to examine electrolyte solutions under non-ideal conditions (e.g., signal convolution from multiple redox events) by simulating the entire voltammogram. To characterize these analyte systems, we first develop closed-form expressions—building on previous work that utilizes oblate spheroidal coordinates—and establish a framework for rapidly evaluating electrolyte composition. We subsequently apply finite difference transient voltammogram models to assess the performance of this workflow. We then validate our findings using model, deterministically-prepared nonaqueous electrolyte solutions containing N-[2-(methoxyethoxy)ethyl]phenothiazine, finding the toolkit is particularly adept at rapidly (< 1 min) estimating the degree to which an electrolyte solution is charged (its “state-of-charge”) and remains intact (its “state-of-health”). Finally, we highlight potential extensions of this method towards advancing in situ or operando diagnostic methods within operating electrochemical devices.
Supplementary materials
Title
Supplementary Information for "An Automated and Lightweight Framework for Electrolyte Diagnostics using Quantitative Microelectrode Voltammetry"
Description
The Supplementary Information provides additional details and analyses not included in the main text.
Actions