Merged molecular switches excel as optoacoustic dyes: azobenzene-cyanines are loud and photostable NIR imaging agents

03 July 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Optoacoustic imaging, also known as photoacoustic imaging, promises micron-resolution noninvasive imaging in biology at much deeper penetration (>cm) depths than e.g. fluorescence. However, the loud, photostable, NIR-absorbing molecular contrast agents which would be needed for optoacoustic imaging of enzyme activity remain unknown: most organic molecular contrast agents are simply repurposed fluorophores, with severe shortcomings of photoinstability or phototoxicity under optoacoustic imaging conditions, which are consequences of their slow S1→S0 electronic relaxation rates. We now disclose that known fluorophores can be rationally modified to reach ultrafast S1→S0 rates, without much extra molecular complexity, simply by merging them with molecular switches. Here, we merge azobenzene switches to cyanine dyes to give ultrafast relaxation (<10 ps, >100-fold faster). Even without adapting instrument settings, these azohemicyanine optoacoustic imaging agents deliver outstanding improvements in signal longevity (>1000-fold increase of photostability) and signal loudness (here: >3-fold even at time zero). We show why this still-unexplored design strategy can offer even stronger performance in the future, as a simple method that will also increase the spatial resolution and the quantitative linearity of photoacoustic response even over extended longitudinal imaging. By bringing the world of molecular switches and rotors to bear on unsolved problems that have faced optoacoustic agents, this practical strategy may be a crucial step towards unleashing the full potential, in fundamental studies and in translational uses, of optoacoustic imaging.

Keywords

photoacoustic
optoacoustic
fluorescence
photothermal
quencher
hemicyanine
cyanine
imaging
photoswitch
azobenzene
molecular switch

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Synthesis, Analysis, Photophysics
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.