Dual Photosensitizer Cycles Working Synergistically in a C(sp)-C(sp3) Cross-Coupling Reaction

29 June 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

To assess the value and reactivity of new photocatalysts (PCs), their performance should be evaluated in one or more established reactions and benchmarked against the performance using known PCs. Here, we evaluated our recently developed PC, pDTCz-DPmS, in a C(sp)-C(sp3) cross-coupling reaction that had been documented in the literature. Previous findings indicated this reaction could not proceed in the absence of PC; however, under our conditions this was not the case. Without PC, a moderate product yield was obtained, while this yield increased significantly upon addition of pDTCz-DPmS. UV-Vis absorption studies indicated that the Hantzsch ester (HE) additive was acting as a competitive absorber of the light from the excitation source, and quenching studies confirmed that the HE was quenched by the radical precursor, N-(acyloxy)phthalimide. Mechanistic investigations established that two parallel photosensitization pathways were in operation; a reductive quenching photocatalytic pathway (using pDTCz-DPmS) and a sacrificial photoreductant pathway (employing HE). These pathways work synergistically to enhance the yield of target product.

Keywords

photocatalysis
photoredox catalysis
thermally activated delayed fluorescence
dual catalysis

Supplementary materials

Title
Description
Actions
Title
ESI
Description
Electronic Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.