A simple, efficient and universal energy decomposition analysis method based on dispersion-corrected density functional theory

27 June 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Energy decomposition analysis (EDA) is an important method to explore the nature of interaction between fragments in a chemical system. It can decompose the interaction energy into different physical components to understand the factors that play key roles in the interaction. This work proposes an energy decomposition analysis strategy based on dispersion-corrected density functional theory (DFT), called sobEDA. This method is fairly easy to implement and very universal. It can be used to study weak interactions, chemical bond interactions, open-shell systems, and interactions between multiple fragments. The total time consumption of sobEDA is only about twice that of conventional DFT calculation for the entire system. This work also proposes a variant of the sobEDA method named sobEDAw, which is designed specifically for decomposing weak interaction energies. Through a proper combination of DFT correlation energy and dispersion correction term, sobEDAw gives a ratio between dispersion energy and electrostatic energy that is highly consistent with the symmetry-adapted perturbation theory (SAPT), which is quite popular and robust in studying weak interactions but expensive. We present a shell script sobEDA.sh to implement the methods proposed in this work based on the very popular Gaussian quantum chemistry program and Multiwfn wavefunction analysis code. Via the script, theoretical chemists can use the sobEDA and sobEDAw methods very conveniently in their study. Through a series of examples, the rationality of the new methods and their implementation are verified, and their great practical values in the study of various chemical systems are demonstrated.

Keywords

Energy decomposition analysis
Density functional theory
Intermolecular interaction
Quantum chemistry
Gaussian
Multiwfn

Supplementary materials

Title
Description
Actions
Title
supplemental information
Description
supplemental information
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.