Crystal Structure Prediction of Energetic Materials

13 June 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The synthesis and experimental testing of energetic materials can be hazardous, but their many industrial and military applications necessitate their constant research and development. We evaluate computational methods for predicting the crystal structures of energetic molecular organic crystals from their molecular structure as a first step in computationally evaluating materials, which could guide experimental work. Crystal structure prediction (CSP) is evaluated on a test set of ten energetic materials with known crystal structures, initially using a rigid-molecule, anisotropic atom-atom force field approach, followed by re-optimization of predicted crystal structures using dispersion-corrected solid state density functional theory (DFT). CSP using the force field was found to provide good results for some molecules, whose known crystal structures are reproduced by one of the lowest energy predictions, but are more variable than for other small organic molecules. Re-optimization of predicted crystal structures using solid state DFT leads to reliable predictions, demonstrating CSP as a approach that can be applied in the area of energetic materials discovery and development.

Keywords

crystal structure prediction
energetic materials

Supplementary materials

Title
Description
Actions
Title
supplementary material
Description
Additional computational details and results
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.