Unsupervised Analysis of Optical Imaging Data for the Discovery of Reactivity Patterns in Metal Alloy

09 June 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Operando wide-field optical microscopy imaging yields a wealth of information about the reactivity of metal interfaces, yet the data are often unstructured and challenging to process. In this study, we harness the power of unsupervised machine learning (ML) algorithms to analyze chemical reactivity images obtained dynamically by reflectivity microscopy in combination with ex situ scanning electron microscopy to identify and cluster the chemical reactivity of particles in Al alloy. The ML analysis uncovers three distinct clusters of reactivity from unlabeled datasets. A detailed examination of representative reactivity patterns confirms the chemical communication of generated OH- fluxes within particles, as supported by statistical analysis of size distribution and finite element modelling (FEM). The ML procedures also reveal statistically significant patterns of reactivity under dynamic conditions, such as pH acidification. The results align well with a numerical model of chemical communication, underscoring the synergy between data-driven ML and physics-driven FEM approaches.

Keywords

chemical communication
unsupervised machine learning
optical microscopy
electrochemistry
alloy

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.