Scattering correction for samples with cylindrical domains measured with polarized infrared spectroscopy

06 June 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Scattering artifacts are one of the most common effects distorting transmission spectra in Fourier-Transform Infrared spectroscopy. Their increased impact, strongly diminishing the quantitative and qualitative power of IR spectroscopy, is especially observed for structures with a size comparable to the radiation wavelength. To tackle this problem, a range of preprocessing techniques based on the Extended Multiplicative Scattering Correction method was developed, using physical properties to remove scattering presence in the spectra. However, until recently those algorithms were mostly focused on spherically shaped samples, for example, cells. Here, an algorithm for samples with cylindrical domains is described, with additional implementation of a linearly polarized light case, which is crucial for the growing field of polarized IR imaging and spectroscopy. The approach is tested on a polymer fiber and on human tissue collagen fiber. An open-source code with GPU based implementation is provided, with a calculation time of several seconds per spectrum. Optimizations done to improve the throughput of this algorithm allow the application of this method into the standard preprocessing pipeline of small datasets.

Keywords

Scattering correction
Linear Polarization
FT-IR Imaging
Cylindrical domains
EMSC

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.