Fast and accurate excited states predictions: Machine learning and diabatization

26 May 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The efficiency of machine learning algorithms for electronically excited states is far behind ground-state applications. One of the underlying problems is the insufficient smoothness of the fitted potential energy surfaces and other properties in the vicinity of state crossings and conical intersections, which is a prerequisite for an efficient regression. Smooth surfaces can be obtained by switching to the diabatic basis. However, diabatization itself is still an outstanding problem. We overcome these limitations by solving both problems at once. We use a machine learning approach combining clustering and regression techniques to correct for the deficiencies of property-based diabatization which, in return, provides us with smooth surfaces that can be easily fitted. Our approach extends the applicability of property-based diabatization to multidimensional systems. We show the performance of the proposed methodology by reconstructing global potential energy surfaces of excited states of nitrosyl fluoride and formaldehyde. While the proposed methodology is independent of the specific property-based diabatization and regression algorithm, we show its performance for kernel ridge regression and a very simple diabatization based on transition multipoles. Compared to most other algorithms based on machine learning, our approach needs only a small amount of training data.

Keywords

diabatization
machine learning
excited states
kernel ridge regression
clustering

Supplementary materials

Title
Description
Actions
Title
Supplementary Data for the Paper
Description
Sampled geometries for both molecules, training indices, and calculated excitation energies and transition moments.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.