Luminescent Copper(I)-Complexes with an Anionic NHC obtained via a Coordination Polymer as Versatile Precursor

25 May 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The anionic diamido N-heterocyclic carbene 1 is used to prepare a series of linear as well as trigonal, heteroleptic CuI complexes with small molecular ligands such as pyridine derivatives or triphenylphosphine. A key role lies in the versatile precursor for these complexes, a moisture- and air-stable 1D coordination polymer [1·Cu]n composed of only the NHC ligand and CuI, such that the copper is linearly coordinated by the carbene carbon atom and one oxygen atom of the backbone of the carbene. This polymer can easily be cleaved into monomeric complexes by addition of the desired ligand to dispersions of the polymer in dichloromethane. In solution, the complexes are in equilibrium with this highly insoluble polymer and free ligand. Thus, analytical and spectroscopical experiments with the compounds are limited to their crystalline state, characterized by single crystal X-ray diffraction experiments. Some of the complexes exhibit visible luminescence in the solid state upon irradiation with ultraviolet light. The spectral features (emission wavelength, Stokes shift, width of the emission band, vibrational fine structure) significantly differ among the complexes. Quantum mechanical computations reveal a subtle interplay of several factors such as coordination number and charge transfer character of the emissive state.

Keywords

carbenes
coordination polymer
copper
photoluminescence

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information to work "Luminescent Copper(I)-Complexes with an Anionic NHC obtained via a Coordination Polymer as Versatile Precursor"
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.