Step-induced double-row pattern of interfacial water on rutile TiO2(110) at electrochemical conditions

19 May 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Metal oxides are promising (photo)electrocatalysts for sustainable energy technologies due to their good activity and abundant resources. Their applications such as photocatalytic water splitting predominantly involve aqueous inter- faces at electrochemical conditions, but in situ probing oxide-water interfaces is proven to be extremely challenging. Here, we present an electrochemical scanning tunneling microscopy (EC-STM) study on the rutile TiO2(110)-water interface, and by tuning surface redox chemistry with careful potential control we are able to obtain high quality images of interfacial structures with atomic details. It is interesting to find that the interfacial water exhibits an unexpected double-row pattern that has never been observed. This finding is confirmed by performing a large scale simulation of a stepped interface model enabled by machine learning accelerated molecular dynamics (MLMD) at ab initio accuracy. Furthermore, we show that this pattern is induced by the steps present on the surface, which can propagate across the terraces by interfacial hydrogen bonds. Our work demonstrates that by combining EC-STM and MLMD we can obtain new atomic details of interfacial structures that are valuable to understand the activity of oxides at realistic conditions.

Keywords

EC-STM
TiO2
MLMD

Supplementary materials

Title
Description
Actions
Title
Supplementary Information for Step-induced double-row pattern of interfacial water on rutile TiO2(110) at electrochemical conditions
Description
Supplementary Information for Step-induced double-row pattern of interfacial water on rutile TiO2(110) at electrochemical conditions
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.