Abstract
Highly stretchable aerogels are promising for flexible electronics but their fabrication is a great challenge. Herein, several kinds of unprecedented intrinsically highly stretchable conductive aerogels with low or negative Poisson’s ratios are achieved by uniaxial, biaxial, and triaxial hot-pressing strategies. The highly elastic reduced graphene oxide/polymer nanocomposite aerogels with compressed and folded porous structures obtained by the uniaxial hot-pressing method exhibit record-high stretchability up to 1200% strain, significantly surpassing all those of the reported intrinsically stretchable aerogels (usually ≤200%). In addition, the meta-aerogels with reentrant porous structures that combine high biaxial stretchability and negative Poisson’s ratios have been obtained by the biaxial hot-pressing method for the first time. Furthermore, the never-before-realized meta-aerogels combining high triaxial stretchability and negative Poisson’s ratios have been achieved by constructing the reentrant porous structures via the triaxial hot-pressing method. The wearable strain sensors based on the resulting aerogels exhibit a record-wide response range (0-1200%). In addition, they can be applied for smart thermal management and electromagnetic interference shielding, which are achieved by regulating the porous microstructures simply via stretching. This work provides a versatile and simple strategy to highly stretchable and negative-Poisson-ratio aerogels promising for various applications including but not limited to flexible electronics, thermal management, electromagnetic shielding, and energy storage.
Supplementary materials
Title
Supporting information
Description
Supporting information for the article "Super-stretchable and negative-Poisson-ratio meta-aerogels"
Actions