Pharmacophore-based ML model to predict ligand selectivity for E3 ligase binders

19 April 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

E3 ligases are enzymes that play a critical role in ubiquitin-mediated protein degradation and are involved in various cellular processes. Pharmacophore analysis is a useful approach for predicting E3 ligase binding selectivity, which involves identifying key chemical features necessary for a ligand to interact with a specific protein target cavity. While pharmacophore analysis is not always sufficient to accurately predict ligand binding affinity, it can be a valuable tool for filtering and/or designing focused libraries for screening campaigns. In this study, we present a fast and inexpensive approach using a pharmacophore fingerprinting scheme known as ErG, which is used in a multiclass machine learning classification model. This model can assign the correct E3 ligase binder to its known E3 ligase and predict the probability of each molecule to bind to different E3 ligases. Practical applications of this approach are demonstrated on commercial libraries for rational design of E3 ligase binders.

Keywords

E3 ligase
E3 binders
pharamophoric analysis
Extended Reduced Graph (ErG) pharmacophore
machine learning

Supplementary materials

Title
Description
Actions
Title
Supplementary Materials
Description
The document contains supporting figures and tables that were not included in the main manuscript.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.