Optimization of binding affinities in chemical space with generative pretrained transformer and deep reinforcement learning

03 April 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Background: The key challenge in drug discovery is to discover novel compounds with desirable properties. Among the properties, binding affinity to a target is one of the prerequisites and usually evaluated by molecular docking or quantitative structure activity relationship (QSAR) models. Methods: In this study, we developed Simplified molecular input line entry system Generative Pretrained Transformer with Reinforcement Learning (SGPT-RL), which uses a transformer decoder as the policy network of the reinforcement learning agent to optimize the binding affinity to a target. SGPT-RL was evaluated on the Moses distribution learning benchmark and two goal-directed generation tasks, with Dopamine Receptor D2 (DRD2) and Angiotensin-Converting Enzyme 2 (ACE2) as the targets. Both QSAR model and molecular docking were implemented as the optimization goals in the tasks. The popular Reinvent method was used as the baseline for comparison. Results: The results on Moses benchmark showed that SGPT-RL learned good property distributions and generated molecules with high validity and novelty. On the two goal-directed generation tasks, both SGPT-RL and Reinvent were able to generate valid molecules with improved target scores. The SGPT-RL method achieved better results than Reinvent on the ACE2 task, where molecular docking was used as the optimization goal. Further analysis shows that SGPT-RL learned conserved scaffold patterns during exploration. Conclusions: The superior performance of SGPT-RL in the ACE2 task indicates that it can be applied to the virtual screening process where molecular docking is widely used as the criteria. Besides, the scaffold patterns learned by SGPT-RL during the exploration process can assist chemists to better design and discover novel lead candidates.

Keywords

Drug design
Transformer
Reinforcement learning
Molecular docking
Hit discovery

Supplementary materials

Title
Description
Actions
Title
Supplementary tables and figures
Description
Supplementary tables and figures
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.
Comment number 1, Xiaopeng Xu: Jun 09, 2024, 13:49

This manuscript is now published on F1000Research under this link: https://f1000research.com/articles/12-757/v2.