Engineering Host-Guest Interactions in Organic Framework Materials for Drug Delivery

29 March 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Metal-organic frameworks (MOF) and covalent organic frameworks (COFs) are promising nanocarriers for targeted drug delivery. Noncovalent interactions between frameworks and drugs play a fundamental role in the therapeutic uptake and release of the latter. However, the scope of framework functionalisations and deliverable drugs remains underexplored. Using a multilevel approach combining molecular docking and density functional theory, we show for a range of drugs and frameworks that experimentally reported release metrics are in good agreement with the in silico computed host-guest interaction energies. Functional groups within the framework significantly impact the strength of these host-guest interactions, while a given framework can serve as an efficient delivery agent for drugs beyond the prototypical few. Our findings identify the interaction energy as a reliable and relatively easy to compute descriptor of organic framework materials for drug delivery, able to facilitate their high-throughput screening and targeted design towards extended-release times.

Keywords

drug delivery
MOF
COF
host-guest interactions
DFT

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Additional figures and computational procedures.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.