Molybdenum Carbonyl Assisted Reductive Tetramerization of CO by Activated Magnesium(I) Compounds: Squarate Dianion vs. Metallo-Ketene Formation

22 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Reactions of a dimagnesium(I) compound, [{(DipNacnac)Mg}2] (DipNacnac = [HC(MeCNDip)2]-, Dip = 2,6-diisopropylphenyl), pre-activated by coordination with simple Lewis bases (4-dimethylaminopyridine, DMAP; or TMC, :C(MeNCMe)2), with 1 atmosphere of CO in the presence of one equivalent of Mo(CO)6 at room temperature, led to the reductive tetramerisation of the diatomic molecule. When the reactions were carried out at room temperature, there is an apparent competition between the formation of magnesium squarate, [{(DipNacnac)Mg}(C4O4){-Mg(DipNacnac)}]2, and magnesium metallo-ketene products, [{(DipNacnac)Mg}{-(C4O4)Mo(CO)5}{Mg(D)(DipNacnac)}], which are not inter-convertible. Repeating the reactions at 80 °C led to the selective formation of the magnesium squarate, implying that this is the thermodynamic product. In an analogous reaction, in which THF is the Lewis base, only the metallo-ketene complex, [{(DipNacnac)Mg}{-(C4O4)Mo(CO)5}{Mg(THF)(DipNacnac)}] is formed at room temperature, while a complex product mixture is obtained at elevated temperature. In contrast, treatment of a 1:1 mixture of the guanidinato magnesium(I) complex, [(Priso)Mg‒Mg(Priso)] (Priso = [Pri2NC(NDip)2]-), and Mo(CO)6, with CO gas in a benzene/THF solution, gave a low yield of the squarate complex, [{(Priso)(THF)Mg}(C4O4){-Mg(THF)(Priso)}]2, at 80 °C. Computational analyses of the electronic structure of squarate and metallo-ketene product types corroborate the bonding proposed, from experimental data, for the C4O4 fragments of these systems.

Keywords

magnesium
carbon monoxide
reductive homologation
squarate
metallo-keten

Supplementary materials

Title
Description
Actions
Title
Supplementary Data
Description
Full synthetic, spectroscopic and crystallographic details for new compounds; and full details and references for the DFT calculations can be found in the Electronic Supporting Information.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.