Phase quantification of heterogeneous surfaces using DFT simulated valence band photoemission spectra

17 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Quantifying the crystallographic phases present at a surface is an important challenge in fields such as functional materials and surface science. X-ray photoelectron spectroscopy (XPS) is routinely employed in surface characterisation to identify and quantify chemical species through core line analysis. Valence band (VB) spectra contain characteristic but complex features that provide information on the electronic density of states (DoS) and thus can be understood theoretically using density functional theory (DFT). Here we present a method of fitting experimental photoemission spectra with DFT models for quantitative analysis of heterogeneous systems, specifically, mapping the anatase to rutile ratio across the surface of mixed-phase TiO2 thin films. The results were correlated with mapped photocatalytic activity measured using a resazurin based smart ink. This method allows large-scale functional and surface composition mapping in heterogeneous systems, and demonstrates the unique insights gained from DFT-simulated spectra on the electronic structure origins of complex VB spectral features.

Keywords

XPS
valence band
TiO2
phase quantification

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Additional information, spectra, fitting procedures.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.