Automatic Screen-out of Ir(III) Complex Emitters by Combined Machine Learning and Computational Analysis

16 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Organic light-emitting diodes (OLEDs) have gained widespread commercial use, yet there is a continuous need to identify innovative emitters that offer higher efficiency and broader color gamut. To effectively screen out promising OLED molecules that are yet to be synthesized, we perform a representation learning aided high throughput virtual screening (HTVS) over millions of Ir(III) complexes, a prototypical type of phosphorescent OLED material, constructed via a random combination of 278 reported ligands. We successfully screen out a decent amount of promising candidates for both display and lighting purposes, which are worth further experimental investigation. The high efficiency and accuracy of our model are largely attributed to the pioneering attempt of using representation learning to organic luminescent molecules, which is initiated by a pre-training procedure with over 1.6 million 3D molecular structures and frontier orbital energies predicted via semi-empirical methods, followed by a fine-tune scheme via the quantum mechanical computed properties over around 1500 candidates. Such workflow enables an effective model construction process that is otherwise hindered by the scarcity of labeled data, and can be straightforwardly extended to the discovery of other novel materials.

Supplementary materials

Title
Description
Actions
Title
Supporting Information for “Automatic Screen-out of Ir(III) Complex emitters by Combined Machine Learning and Computational Analysis”
Description
Supporting Information for this paper
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.