Effect of pore mesostructure on the electrooxidation of glycerol on Pt mesoporous catalysts

17 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Glycerol is a renewable chemical that has become widely available and inexpensive due to the increased production of biodiesel. Noble metal materials have shown to be effective catalysts for the production of hydrogen and value-added products through the electrooxidation of glycerol. In this work we develop three platinum systems with distinct pore mesostructures, e.g., hierarchical pores (HP), cubic pores (CP) and linear pores (LP); all with high electrochemically active surface area (ECSA). The ECSA-normalized GEOR catalytic activity of the systems follows HPC > LPC > CPC > commercial Pt/C. Regarding the oxidation products, we observe glyceric acid as the main three-carbon product (3C), with oxalic acids as the main two-carbon oxidation product. DFT-based theoretical calculations support the glyceraldehyde route going through tartronic acid towards oxalic acid and also help understanding why the dihydroxyacetone (DHA) route is active despite the absence of DHA amongst the observed oxidation products.

Keywords

electrooxidation
glycerol
mesoporous
platinum
electrocatalysis
hydrogen production

Supplementary materials

Title
Description
Actions
Title
Electronic supplementary information
Description
Additional characterization, modelling and comparison to literature value.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.